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Abstract

In marine ecosystems, rising atmospheric CO; and climate change are asso-
ciated with concurrent shifts in temperature, circulation, stratification, nu-
trient input, oxygen content, and ocean acidification, with potentially wide-
ranging biological effects. Population-level shifts are occurring because of
physiological intolerance to new environments, altered dispersal patterns,
and changes in species interactions. Together with local climate-driven in-
vasion and extinction, these processes result in altered community structure
and diversity, including possible emergence of novel ecosystems. Impacts are
particularly striking for the poles and the tropics, because of the sensitivity
of polar ecosystems to sea-ice retreat and poleward species migrations as
well as the sensitivity of coral-algal symbiosis to minor increases in temper-
ature. Midlatitude upwelling systems, like the California Current, exhibit
strong linkages between climate and species distributions, phenology, and
demography. Aggregated effects may modify energy and material flows as
well as biogeochemical cycles, eventually impacting the overall ecosystem
functioning and services upon which people and societies depend.
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INTRODUCTION

Marine ecosystems are maintained by the flow of energy from primary producers at the base of
food webs through to intermediate consumers, top predators (including humans), and pathogens,
and then back again through decomposition and detrital pathways. Thus, marine communities are
biological networks in which the success of species is linked directly or indirectly through various
biological interactions (e.g., predator-prey relationships, competition, facilitation, mutualism) to
the performance of other species in the community. The aggregate effect of these interactions
constitutes ecosystem function (e.g., nutrient cycling, primary and secondary productivity),
through which ocean and coastal ecosystems provide the wealth of free natural benefits that
society depends upon, such as fisheries and aquaculture production, water purification, shoreline
protection, and recreation.

However, growing human pressures, including climate change, are having profound and
diverse consequences for marine ecosystems. Rising atmospheric carbon dioxide (CO;) is one of
the most critical problems because its effects are globally pervasive and irreversible on ecological
timescales (Natl. Res. Counc. 2011). The primary direct consequences are increasing ocean
temperatures (Bindoff et al. 2007) and acidity (Doney et al. 2009). Climbing temperatures create
a host of additional changes, such as rising sea level, increased ocean stratification, decreased
sea-ice extent, and altered patterns of ocean circulation, precipitation, and freshwater input
(Figure 1a). In addition, both warming and altered ocean circulation act to reduce subsurface
oxygen (O;) concentrations (Keeling et al. 2010). In recent decades, the rates of change have been
rapid and may exceed the current and potential future tolerances of many organisms to adapt.
Further, the rates of physical and chemical change in marine ecosystems will almost certainly
accelerate over the next several decades in the absence of immediate and dramatic efforts toward
climate mitigation (Natl. Res. Counc. 2011).

Direct effects of changes in ocean temperature and chemistry may alter the physiological func-
tioning, behavior, and demographic traits (e.g., productivity) of organisms, leading to shifts in the
size structure, spatial range, and seasonal abundance of populations. These shifts, in turn, lead
to altered species interactions and trophic pathways as change cascades from primary producers
to upper-trophic-level fish, seabirds, and marine mammals, with climate signals thereby propa-
gating through ecosystems in both bottom-up and top-down directions. Changes in community
structure and ecosystem function may result from disruptions in biological interactions. There-
fore, investigating the responses of individual species to single forcing factors, although essential,
provides an incomplete story and highlights the need for more comprehensive, multispecies- to
ecosystem-level analyses.

The effects of rising CO, do not act in isolation. Additional regional pressures on ocean
ecosystems (Figure 15) include intensive use of fertilizers, coastal and benthic habitat degradation,
overexploitation of fish stocks, rising aquaculture production, and invasive species (Halpern et al.
2008). Coastal hypoxia is increasing and expanding globally (Diaz & Rosenberg 2008). Ecosystem
deterioration is intense and increasing, particularly for coastal systems, with 50% of salt marshes,
35% of mangroves, 30% of coral reefs, and 29% of seagrasses already either lost or degraded
worldwide (Jackson 2010). Thus, the integrated and synergistic effects of these multiple stressors
on marine ecosystems—both CO; and non-CO, related—must be considered in total, not as
independent issues (Doney 2010).

There have been few systematic reviews of the impacts of rising CO; and climate change on
marine ecosystems (e.g., Hoegh-Guldberg & Bruno 2010). Here, we document the emerging
science in this field, cutting across biological scales from organisms to ecosystems and illustrating
general points with three case studies—sea-ice-dependent polar ecosystems, shallow tropical and
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Figure 1

(4) Changes in @ global mean sea level (teal line; Jevrejeva et al. 2008), @ summer Arctic sea-ice area (yellow line; Walsh & Chapman
2001), ® 0-700-m ocean heat content (orange line; Levitus et al. 2009), @ sea-surface temperature (brown line; Rayner et al. 2006),
® mean ocean-surface pH (blue line; Natl. Res. Counc. 2010), and ® atmosphere pCO; (red line; Petit et al. 1999). Light purple shaded
region denotes projected changes in pH and pCO; consistent with the Intergovernmental Panel on Climate Change’s
twenty-first-century A2 emissions scenario with rapid population growth. () Time series (as identified in figure key): trends in world
population (Goldewijk 2005), U.S. coastal population (Wilson & Fischetti 2010), anthropogenic nitrogen fixation (Davidson 2009),
North American marine biological invasions (Ruiz et al. 2000), global marine wild fish harvest (Food Agric. Org. U.N. 2010),
cumulative seagrass loss (Waycott et al. 2009), cumulative Caribbean coral cover loss (Gardner et al. 2003), cumulative mangrove loss
(Food Agric. Org. U.N. 2007), cumulative global hypoxic zones (Diaz & Rosenberg 2008), and global mariculture production (Food
Agric. Org. U.N. 2010). All time series in panel 4 are normalized to 1980 levels. Trends with <1.5-fold variation are depicted as solid
lines (Jeft axis), and trends with >1.5-fold variation are depicted as dotted lines (right awis).
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subtropical regions (coral reef systems), and an upwelling system (the California Current)—where
substantial change is evident already and susceptibility to further change is likely.

CLIMATE AND GLOBAL CHANGE

Humans influence climate primarily through fossil-fuel, industrial, agricultural, and other land-
use emissions that alter atmospheric composition. Long-lived, heat-trapping greenhouse gases
(CO;, CHy4, N, O, tropospheric ozone, and chlorofluorocarbons) warm the planet’s surface glob-
ally, whereas shorter-lived aerosols can either warm or cool regionally. Direct radiative warming
is amplified through a series of positive climate feedbacks (e.g., water vapor and sea ice); best esti-
mates of projected global mean surface temperature increase over the twenty-first-century range
from approximately 1.8°C to 4.0°C, depending on emission scenario (Solomon etal. 2007). Fossil-
fuel CO; emissions for the past decade have been at the high-end of Intergovernmental Panel
on Climate Change (IPCC) scenarios owing to rapid economic growth in developing countries
(Le Quéré et al. 2009). Moreover, the climate system exhibits considerable inertia, and tempera-
tures will likely continue to increase decades to centuries after greenhouse gas levels stabilize.

Significant ocean physical changes are documented in the most recent IPCC assessment
(Bindoff et al. 2007) (Figure 1). Upper-ocean heat content has grown substantially since the
1950s, with mean global sea-surface temperature (SST) increasing by approximately 0.4°C during
this interval (Levitus et al. 2009). Warming is not spatially uniform owing to ocean circulation,
spatially variable changes in winds, and interaction with natural modes of climate variability such
as El Nifio/Southern Oscillation (ENSO) and the North Atlantic Oscillation (Ishii et al. 2006).
Upper-ocean salinity is trending fresher in low-salinity regions and saltier in high-salinity regions,
patterns consistent with a warmer atmosphere and SST's driving elevated evaporation and precip-
itation rates (Boyer et al. 2005, Bindoff et al. 2007, Durack & Wijffels 2010). Broad-scale warming
and mid- to high-latitude freshening increase water-column vertical stratification, which in turn
alters ocean currents, mixing, and ventilation.

Sea-ice extent has declined dramatically in the Arctic (Stroeve et al. 2007, Polyakov et al. 2010)
and along the western Antarctic Peninsula (WAP) (Stammerjohn et al. 2008), particularly during
summer. The Arctic is expected to be sea-ice free during summer starting in the mid- to late
twenty-first century (Holland et al. 2008), if not earlier, and thick, multiyear Arctic ice is being
replaced with thin, first-year ice (Maslanik et al. 2007). Owing to thermal expansion and melting
of landfast ice (glaciers and ice caps and sheets), warming is causing sea level to rise, with a current
rate of approximately 3 mm per year (Cazenave et al. 2008). Locally, sea-level rise can differ
substantially from the global mean because of heterogeneity in upper-ocean warming, changes in
atmosphere and ocean circulation, and local geological uplift or subsidence.

Climate warming affects regional wind patterns and thus ocean circulation in multiple dimen-
sions. A strengthening of midlatitude westerlies in the Southern Hemisphere promotes spin-up
of subtropical circulations and a poleward shift in the Antarctic Circumpolar Current (Roemmich
etal. 2007). Warmer SST's may affect the frequency and strength of tropical storms, increasing the
vulnerability of coastal habitats. Recent analyses, however, suggest only a modest increase, or even
a decrease, in the frequency and intensity of future Atlantic cyclones (Kerr 2008). Upwelling winds
in Eastern Boundary Current systems (EBCSs) are generated by pressure differences between con-
tinental thermal lows and oceanic highs; as warming intensifies pressure gradients between land
and sea, upwelling winds are predicted to intensify (Bakun et al. 2010). Regional-scale projections
generally converge on increased upwelling and/or changes to the seasonality of upwelling winds
(Snyder et al. 2003). In some instances, projected upwelling increases may overcome the coun-
tervailing effects of upper-ocean warming and stratification to cause regional cooling (Auad et al.

Doney et al.



Annu. Rev. Marine. Sci. 2012.4:11-37. Downloaded from www.annualreviews.org
by Universidade Federal da Bahia on 01/09/13. For personal use only.

Anthropogenic

Climate variability/

activities < climate change
Reactive N Hydrologic Sea-level Water Winds
(mostly +) cycle (+) (-) rise (+) temperature
(mostly +)
| I — —
v 2R

Nutrient loads
(+) () Biological responses

l I Metabolic rates (mostly +)
Primary production (+)

Nutrient-enhanced Respiration (+)

Physical environment

Stratification (+)
Oxygen saturation (-)
Current shifts

> productivity Tropical storms
|
' ) S
| Harmful and
| Vertical carbon flux - noxious
| algal blooms Bottom-water
| l hypoxia
Sedimentary carbon T
and nutrient pools
e o —— —— — ——— —— — — — -1

Figure 2

Conceptual diagram of human and climate interactions on nutrient-enhanced productivity, harmful and
noxious algal blooms, and formation of hypoxia. Positive (+) interactions designate a worsening of
conditions related to algal blooms and hypoxia, and negative (—) interactions designate fewer algal blooms
and lessening of hypoxia symptoms. Dashed lines indicate negative feedback processes to nutrient-enhanced
production and subsequent hypoxia. Dotted line between anthropogenic activities and climate variability/
climate change indicates that current climate change is driven largely by humans, but that climate change
can certainly affect human activities. Modified from Rabalais et al. (2010).

2006). Available time series point to broad trends of increased wind-driven upwelling across many
of the ocean’s major EBCSs (Garcia-Reyes & Largier 2010, Patti et al. 2010).

Projected declines in ocean oxygen levels reflect the combined effects of reduced oxygen solu-
bility from warming and reduced ventilation from stratification and circulation changes (Keeling
etal. 2010). Deoxygenation is also possible because of shifts in the magnitude and composition of
sinking organic material (Hofmann & Schellnhuber 2009). Stramma et al. (2008) reported ver-
tical expansion of the intermediate-depth low-oxygen zones in the eastern tropical Atlantic and
the equatorial Pacific during the past 50 years, and Whitney et al. (2007) documented persistent
oxygen declines in the eastern subarctic Pacific between the 1950s and 2000s. Such events related
to warming are not well documented in coastal waters, but the number of coastal hypoxic regions
has grown dramatically with time (Diaz & Rosenberg 2008), in large part because of human ac-
tivities that increase the amount of bioavailable nitrogen that reaches the coastal ocean. Future
levels of coastal hypoxia will be modulated by climate change via alterations in vertical stratifi-
cation (temperature, precipitation, freshwater runoff), winds, and mixing (Rabalais et al. 2010;
Figure 2).

In the open ocean, rising atmospheric CO, and the resulting increased oceanic CO; uptake are
the predominant factors driving ocean acidification (Dore et al. 2009). Ocean acidification reflects
a series of chemical changes: elevated aqueous CO; and total inorganic carbon as well as reduced
pH, carbonate ion, and calcium carbonate saturation states (Doney et al. 2009). Sea-surface pH is
estimated to have dropped by 0.1 pH units since the preindustrial era, a 26% increase in acidity
over the past 150 years, mostly in the past several decades. Future projections suggest declines of
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an additional 0.2-0.3 pH units over this century (Feely et al. 2009). Polar regions may be especially
sensitive because of a transition to undersaturated conditions for aragonite in surface water within
the next several decades (Steinacher et al. 2009). In eutrophic coastal systems, surface water is
usually higher in pH because of primary production, whereas water below the pycnocline has
reduced pH because of respiratory demand and CO; production. Furthermore, changing land use
and river flow can alter river alkalinity and, in turn, influence coastal inorganic carbon balance;
for example, Raymond et al. (2008) documented a large anthropogenic increase in Mississippi
bicarbonate and water fluxes.

BIOLOGICAL PROCESSES AND STRUCTURE

Physical and chemical changes have strong direct and indirect effects on the physiology and
behavior of marine organisms, which can translate to population- and community-level changes.
Consequently, changes in ocean conditions and key biological interactions can alter the underlying
dynamics that govern ecosystem structure and function.

Physiological Responses

Physiological performance is the principal determinant of a species’ tolerance to environmental
variability and change. As climate or other conditions shift, organisms initially respond based
on physiological and behavioral adaptations molded through their evolutionary history (Somero
2012). New conditions may be physiologically tolerable, allowing acclimatization (an adjustment
of physiology within individuals) or adaptation (increased abundance and reproduction of tolerant
genotypes over generations), or may be intolerable, promoting migration (by individuals or popu-
lations), change in phenology (timing of annual events), or death and local extinction if adaptation
is not possible (Parmesan 2006).

Environmental change may benefit some species or populations, owing to greater availability
of food or nutrients, reduced physiological costs of maintenance (e.g., energy used for respira-
tion, acid-base balance, calcification), or reduced competition or predation. Such species may
experience higher survival, growth, and reproduction, and may thus be “winners” in a chang-
ing world. In many cases, however, a shift toward environmental conditions outside the normal
range of variability is stressful, causing suboptimal physiological performance and thus creating
the “losers” of environmental change. For such individuals, more stressful conditions may lead to
higher mortality, reduced growth, smaller size, and reduced reproduction.

Generally, metabolic rates of ectothermic organisms rise exponentially with temperature, lead-
ing to higher rates for most physiological processes, including photosynthesis and respiration,
within the range of temperatures that an organism tolerates. This relationship is formalized in the
concept of Qyo, which is the rate increase resulting from a 10°C rise in temperature. For example,
Eppley (1972) reported an average Qo of 1.9 for growth rates among ~130 species and clones
of phytoplankton, yielding a 37% increase in growth rate for a 2°C warming. On this basis, it
might be expected that primary production, as well as the growth rates of ectothermic animals
and pathogens, will increase in a warmer ocean. However, nutritional status, thermal tolerance,
oxygen availability, environmental chemistry, food availability, or other factors may limit growth
and production, or other biological processes, regardless of metabolic rate.

In heterotrophic organisms, warmer temperatures raise basal metabolic rates but can also raise
respiratory demand, potentially reducing their aerobic scope for activity (e.g., feeding, predator
avoidance, digestion) and leaving less energy for growth and reproduction (Pértner & Knust 2007).
For example, salmon swimming through warmer ocean waters in the North Pacific experience
elevated metabolic and respiratory rates, which in turn increase energy requirements. In addition,
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warmer surface waters generally have lower prey and oxygen levels. Consequently, energy demand
can exceed energy intake and is thought to have contributed to reduced growth, survival, and
spawning success of salmon in the Pacific Northwest (Welch et al. 1998, Farrell et al. 2008).

The expansion and intensification of hypoxic regions, particularly along productive ocean
margins (Diaz & Rosenberg 2008), are increasingly stressful for many marine organisms. Severe
hypoxia has led to mass mortalities of organisms in several areas. Even mild hypoxia can have strong
effects on the physiology and activity levels. Low-oxygen conditions can initiate compensatory
respiratory changes, including higher blood flow and ventilation or increased concentration of
respiratory proteins or binding affinity (Wu 2002). Oxygen conservation (through reduced activity
and/or reduced cellular function) and anaerobic metabolism are invoked to cope with reduced
oxygen levels. Consequently, hypoxia can lead to reduced feeding, growth, reproduction, and
survival, with highly variable responses among species.

By lowering carbonate ion levels and increasing carbonate solubility, ocean acidification is
thought to increase the energetic cost of calcification (Fabry et al. 2008). This idea is supported by
observations of mostly negative effects of higher CO; on calcification rates for a variety of marine
invertebrates (Kroeker etal. 2009, Hofmann et al. 2010). Acidification, therefore, could have major
impacts on biogenic habitat (e.g., coral reefs, oyster beds), food webs (e.g., pteropods and other
mollusks), and planetary geochemical cycles (e.g., pelagic coccolithophore algae). For carbon-
limited autotrophs (including seagrasses and some phytoplankton), increased CO; may promote
photosynthesis, whereas for others (particularly calcifying taxa), photosynthesis may be either
reduced or unaffected (Kroeker etal. 2009). In some taxa, including some fishes and mollusks, lower
pH reduces the oxygen-binding capacity of respiratory proteins (e.g., hemocyanin), limiting their
aerobic scope for activity unless acclimation or behavioral changes can compensate for respiratory
loss. Thus, acidification and hypoxia may have synergistic effects. Immersion in more acidic waters
can also disturb the internal acid-base balance of organisms, which in turn can affect a wide variety
of metabolic processes (Portner 2010). Some organisms, particularly those with well-developed
respiratory systems (e.g., fishes), can maintain or restore internal acid-base balance with some
degree of change in ocean chemistry, whereas less physiologically flexible taxa (e.g., sea urchins)
may be more vulnerable.

Population and Community Responses

Physiological responses to climate change will manifest at the population level as shifts in abun-
dance, timing of annually recurring events (phenology), and the spatial organization (distribu-
tion and dispersion) of organisms. Suboptimal conditions and poor individual performance can
cause reduced abundance and population productivity as well as reduced resilience to disturbance.
Well-documented biological impacts from climate change include shifts in population range and
distributions, which reflect the product of several interacting processes (see sidebar Long-Term
Ocean Observations). First, the dispersal capacity of species from a regional species pool deter-
mines whether they will have the opportunity to invade or inhabit a site. Second, the range of
abiotic environmental conditions that are physiologically tolerable to a species defines its funda-
mental niche, and thus niche boundaries can change as climate changes the ocean environment.
Third, biological interactions (predation, competition, and others) may constrain, or in some cases
expand (Bruno et al. 2003), the habitable range of conditions or the realized niche of a species.
A set of species with overlapping realized niches constitutes a community, and by affecting all of
these processes, climate change can alter the composition and function of marine communities.
One example of changes to dispersal patterns is that many boreal species currently restricted
to either the North Atlantic or North Pacific are separated because of dispersal inhibition
by harsh Arctic conditions. As this Arctic barrier weakens with warming and sea-ice retreat,
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LONG-TERM OCEAN OBSERVATIONS

Although relatively few in number, long-term ocean biological data sets are essential for understanding climate
change impacts on marine ecosystems (Ducklow et al. 2009). Ocean time-series and spatial surveys can be used
to elucidate temporal trends and empirical relationships between biological variables and environmental forcing.
Complementing more mechanistic laboratory and field process studies, field records provide information on the
biological responses of natural populations and communities over longer timescales and larger spatial scales than
are typically accessible to direct manipulation. Multidecadal time spans are often needed to detect climate change
signals from substantial natural variability. Commonly, long-term data records were originally collected for different
purposes and have been adapted for climate research. For example, information on geographic range shifts for fish
populations has been determined from routine commercial fishery surveys. Other seminal biological data sets include
the Continuous Plankton Recorder survey established in 1931 and the California Cooperative Oceanic Fisheries
Investigations (CalCOFI) program initiated in 1949. In the 1980s and 1990s, national and international ocean
research programs created new time series such as the Hawaii Ocean Time-Series and the marine Long-Term
Ecological Research sites. Though somewhat shorter in length, satellite remote-sensing records of ocean color
are emerging as important tools for studying trends and patterns in lower trophic levels and primary production
(McClain 2009). Maintaining long-term ocean sampling is challenging in terms of logistics, personnel, and sustained
funding. Future time series may rely on a combination of limited ship-based sampling integrated with cost-effective
autonomous sensors and platforms.

large-scale trans-Arctic exchange between the two oceans seems likely over the coming decades,
as has occurred in the past (Vermeij & Roopnarine 2008). For example, the diatom Neodenticula
seminae, a dominant primary producer in North Pacific pelagic ecosystems, became abundant in
1999 in the Atlantic for the first time in 800,000 years following an exceptional year of ice-free

water in the Canadian Arctic (Reid et al. 2007).

Climate change also causes shifts in ranges as species align their distributions to match their
physiological tolerances under changing environmental conditions. Species’ distributions along
environmental gradients can provide key information on how they will respond to climate forcing
(Hillyer & Silman 2010). Empirical and theoretical studies suggest that in response to warmer
conditions, marine fishes and invertebrates tend to shift their distributions to higher latitudes
and/or into deeper depths (Mueter & Litzow 2008, Spencer 2008), consistent with observational
evidence for the North Sea (Perry et al. 2005) and Mid-Atlantic Bight (Nye et al. 2009, Lucey
& Nye 2010). Climate-driven range shifts also may be accompanied by changes in demographics
and organism abundance and size, as suggested by coupled climate-population models (Hare et al.

2010).

Climate-related distribution shifts contribute to observed alterations in community composi-
tion and biodiversity for many systems and organism groups, from rocky intertidal invertebrates
(Barry etal. 1995) to seabirds (Hyrenbach & Veit 2003). Warming has been shown to decrease the
diversity of salt marsh plant communities via increased evapotranspiration and soil drying (Gedan
& Bertness 2009). In the North Sea, fish species richness increased by ~50% between 1986 and
2005 as temperatures rose, with a general trend toward greater representation of small-bodied
southern species (Perry et al. 2005). Bioclimate envelope models predict that invasion intensity
(the number of invasions relative to current species richness) may reach a global average of 55% by
2050 (Cheung et al. 2009). Warming is not the only driver of such changes; in a northeast Pacific
rocky shore community, declining pH over eight years corresponded with gradual shifts from the
mussel-dominated communities typical of such temperate shores to communities more dominated
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by fleshy algae and barnacles (Wootton et al. 2008). In shallow benthic communities near natural
CO; seeps, calcareous corals and algae are replaced by noncalcareous algae, and juvenile mollusks
are sharply reduced in number or absent altogether (Hall-Spencer et al. 2008).

Multiple factors beyond climate change influence changes in marine community composition
and trophic structure, and synergistic effects may arise among climate, exploitation, and the in-
troduction of invasive species. A survey of four well-studied marine regions found that invasions
are shifting food webs toward domination by suspension and deposit feeders low in the food
chain, presumably reflecting the widespread transport of small fouling organisms and the decline
of large fishes caused by human harvesting (Byrnes et al. 2007). Molecular genetic techniques
are emerging as powerful tools for deciphering the history of species invasions caused by human
transport (Geller et al. 2010) and may be equally valuable for understanding climate-driven shifts.
Evidence from the Atlantic (Stachowicz et al. 2002) and Pacific (Sorte et al. 2010) coasts of North
America indicates that nonnative species in fouling invertebrate communities are favored over
native species in warmer waters. In this way, warming may tend to homogenize the composition
of marine communities.

Climate-mediated community effects also involve alterations in trophic interactions. Given that
physiological responses to climate change are species specific, changes in timing of life-history
events (phenology) induced by climate change will often differ between interacting species at dif-
ferent trophic levels, leading to mismatches in trophic synchrony and effects on consumer-prey
relationships (Brander 2010). In aquatic mesocosms and terrestrial ecosystems, higher trophic
levels are often more affected, resulting in more variability and higher extinction risks, than lower
ones (Petchey et al. 1999, Voigt et al. 2003). Warming can also increase the consumption rates
and interaction strengths of consumers, as shown for intertidal sea stars (Sanford 1999), leading to
stronger top-down effects of benthic herbivores feeding on seaweeds (O’Connor 2009), zooplank-
ton feeding on phytoplankton (O’Connor et al. 2009), and benthic predators feeding on bivalves
(Philippart et al. 2003). Climate change and acidification will undoubtedly affect microbial food
webs as well, although there are many uncertainties (Sarmento et al. 2010, Joint et al. 2011).
The complex networks of interactions among species mean that climate-mediated changes at the
community level can be difficult to predict and sometimes counterintuitive.

Increasingly, climate-mediated shifts in species distributions are creating novel or emerging
no-analog ecosystems consisting of species with little or no shared evolutionary history (Hobbs
et al. 2006, Williams & Jackson 2007). There is growing evidence that the climate-mediated
invasions mentioned above are biased taxonomically or by functional traits such as life history and
trophic level (Byrnes et al. 2007). Some studies indicate that grazing pressure tends to be stronger
atlow latitudes, resulting in elevated plant and sponge investments in chemical defenses (Bolser &
Hay 1996, Pennings & Silliman 2005), and warming-driven range shifts may strengthen species
interactions at temperate latitudes. Other studies suggest that a warming climate aggravates the
prevalence of marine diseases (Harvell et al. 2002).

Ecosystem Structure and Function

Ecosystems integrate the responses of organism physiologies and ecological interactions to changes
in climate and CO;. As a consequence, the mechanisms that link changes in populations and com-
munities to alterations in ecosystem-level properties such as trophic structure, food-web dynamics,
energy flow, and biogeochemical cycles are diverse. Disruptions of existing biological interactions
can occur through asynchronous shifts in the seasonal phenologies of interacting predator and
prey populations (i.e., the match-mismatch hypothesis); biogeographic reorganizations, leading to
changes in community composition and biodiversity; and loss of functionally prominent species.
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These processes can be expressed through bottom-up impacts such as declines in water-column
primary production and/or shifts toward smaller cells in planktonic communities, as well as through
top-down impacts that cascade down from the losses or gains of ecologically dominant consumers.
Alterations in biogeochemical cycling can occur because of the replacement of functional groups
(e.g., calcifiers) even if overall productivity and diversity remain approximately constant.

The actual extent of ecosystem changes faced by individual systems will likely depend on factors
such as functional redundancy, the rate and sequence of community change, and other features
of population and community organization. Some studies suggest that geographic variability may
modulate ecosystem response to climate-induced structural changes. Navarrete et al. (2005), for
example, found that a southern part of the upwelling region along the western coast of Chile
exhibited top-down control; in the north, communities were recruitment limited, so predators had
negligible effects on community composition. Considerable progress has been made on methods
for identifying reliable indicators (i.e., measurable characteristics of ecosystems, such as mean
length of fish or proportion of predatory fish in a community) of marine ecosystem function and
resistance to perturbations (Gaichas et al. 2009, Samhouri et al. 2009, Bundy et al. 2010).

Numerous studies have addressed the response of open-ocean primary productivity to cli-
mate forcing on local to global scales. Retrospective studies show that increases in upper-ocean
temperature, and hence vertical stratification, result in decreases in phytoplankton and primary
production, especially in mid- to low latitudes (Behrenfeld et al. 2006). Warming also may cause
the fraction of small phytoplankton (picophytoplankton) to increase, reducing the energy flow
to higher trophic levels (Moran et al. 2010). Declines in historical phytoplankton abundance are
detectable on scales from decades to the past century (Antoine et al. 2005, Boyce et al. 2010).
Steinacher et al. (2010) report results from four climate models indicating reductions in global
primary production from 2% to 20% by 2100 with declines in mid- to low latitudes due to reduced
nutrient input into the euphotic zone, and gains in the Southern Ocean and (in three of the four
models) the Arctic due to warmer temperatures and less sea ice.

Further, entire biomes may expand or contract, with the potential for the emergence of new
regions with combined biotic and abiotic conditions that have not been observed before. Polovina
etal. (2011) forecast a 30% areal increase of the North Pacific subtropical biome by 2100, owing
to northward expansion by as much as 100 km per decade, as well as growth in the area where
tropical SSTs permanently exceed 30°C from a negligible amount to over 25 million km?. Such
warmer, more nutrient-poor oligotrophic conditions typically lead to lower primary productivity
and greater dominance of a microbial food web with increased recycling, reduced export flux of
sinking organic matter, and greater production of dissolved organic matter.

Climate-driven impacts on keystone and foundation species may be especially important. Some
critical habitat-forming marine benthic species, such as oysters or corals, appear sensitive to CO,
and climate change both directly and through pathogens. In oyster populations within Delaware
Bay, United States, the protistan parasite Perkinsus marinus (which causes the disease Dermo) pro-
liferates at high water temperatures and high salinities, and epidemics followed extended periods
of warm winter weather; these trends in time are mirrored by the northward spread of Dermo up
the eastern seaboard as temperatures warmed (Ford 1996). Similarly, corals on the Great Barrier
Reef showed more infections by the emerging disease “white syndrome” in warmer than normal
years (Bruno et al. 2003). These processes and others resulting from altered species composition
will likely have important rippling affects through ecosystems.

Climate change and altered ocean circulation may change organism dispersal and the transport
of nutrient and organic matter that provide important connectivity across marine ecosystems. If
species dispersal is disrupted by climate-induced thermal blocks or shifts in currents carrying larvae,
both species and community dynamics will be altered. For example, Gulf menhaden transported
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5%-10% of primary production of estuaries in Louisiana to deeper communities in the Gulf of
Mexico (Deegan 1993). Energy exchanges between habitats such as mangroves—coral reefs and
coral reefs—seagrasses can be disrupted in complex ways as fish abundances decline (e.g., Mumby &
Hastings 2008, Valentine et al. 2008). Many studies have found that altering the metapopulation
dynamics of a species can reduce its ability to withstand pressures because rescue and recolonization
dynamics are disrupted (e.g., Lipcius et al. 2008). However, the net effect of climate-induced
changes on the distribution of habitats and species’ ability to maintain energy flows between them
has not been examined in great detail.

ECOSYSTEM CASE STUDIES

No ecosystem is untouched by the effects of increasing CO; in the atmosphere and climate change;
although the effects are felt initially at the surface, perturbations associated with the changing
climate have already been detected in the deep sea, with consequences for the global carbon cycle
(Smith et al. 2009). Using the following three case studies, we illustrate the complex interplay of
physical and chemical forcing with physiological and behavioral responses of individual organisms
that can result in changes to ecosystem structure and function.

Ice-Dominated Polar Systems

Currently, the physical climate of the poles is changing as fast or faster than anywhere on Earth,
and thus the poles serve as both a bellwether of climate change and an illustration of the complex
ecosystem-level consequences that we can expect elsewhere. As a result, polar marine ecosystems
are experiencing large shifts in species size, spatial range, and seasonality of production that can
cascade directly to valued ecosystem services, such as the health of large marine mammals and
seabirds as well as fisheries (see sidebar Climate Impacts on Ecosystem Services from the Sea).
Polar marine ecosystems are intimately tied to sea-ice extent and seawater temperatures, which
together influence food sources, organismal growth and reproduction, and biogeochemical cycles.
Many polar fishes and invertebrates are adapted to contemporary cold conditions and have lim-
ited tolerance to seemingly small increases in water temperature (Somero 2012). Life cycles and

CLIMATE IMPACTS ON ECOSYSTEM SERVICES FROM THE SEA

Climate change puts at risk many of nature’s benefits, or ecosystem services, that humans derive from the sea. These
impacts will have repercussions for society’s dependence on the ocean for wild-caught and farmed food, recreation,
nutrient cycling, waste processing, protection from natural hazards, climate regulation, and other services. For
example, climate-induced sea-level rise could put added pressure on coastal infrastructure and thus the health and
safety of human communities. Natural habitats such as wetlands, mangroves, coral and oyster reefs, and seagrasses
buffer coastlines from erosion and inundation, providing important protective services. One of the many advantages
of nature-based protection is that those same habitats also provide other benefits, including nursery grounds for
commercial and recreationally valued species, filtration of sediment and pollutants, and carbon storage and seques-
tration. The social values of these services are broad and include those reflected in markets, avoided damage costs,
maintenance of human health and livelihoods, and cultural and aesthetic sustenance. Understanding how human
activities and a changing climate are likely to interact to affect the delivery of these ecosystem services is of the
utmost importance as we make decisions now that affect the health of marine and coastal systems and their ability
to sustain future generations.
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physiological requirements of many polar organisms are closely tied to the annual cycles of sea
ice and available sunlight. The early ice-edge bloom supports underlying benthic communities,
often initiating reproductive processes in the spring. Model projections reveal that greater light
availability caused by a reduction in sea ice may increase open-water phytoplankton primary pro-
duction (Arrigo et al. 2008, Steinacher et al. 2010), although nutrient limitation could ultimately
limit the magnitude of this increase (Grebmeier et al. 2010). Changes in community composition
may complicate this picture—a recent study documented a shift to smaller-celled algal species due
to freshening in the western Arctic Ocean (Li et al. 2009), with the potential for reduced over-
all productivity. Sea ice also provides an important habitat for seabirds and mammals (e.g., polar
bears, walrus, seals) that use the ice as a foraging platform or breeding habitat, suggesting that these
species will face problems with warming. A recent review evaluating Arctic ecosystem responses
to climate change (Wassmann et al. 2011) documented marine species range shifts; changes in
abundance, growth, condition, behavior, and phenology; and community and regime shifts as key
components of change. Thus, climate change can drive changes in both abiotic and biotic interac-
tions, including nonlinear impacts within the food-web structure that can have unexpected results
that may move current marine ecosystems to a new state.

An example of an Arctic ecosystem already undergoing change is the seasonally ice-covered
northern Bering shelf ecosystem, which is dependent on spring ice-edge production. With limited
zooplankton grazing early in the spring season, the high primary production sinks and is exported
to the shallow sediments, supporting a large and diverse benthic community that is critical for
benthic-feeding marine mammals and seabirds (Grebmeier et al. 2006). Seasonal ice coverage
and cold waters have typically limited pelagic fish predation, allowing diving seabirds, bearded
seals, walrus, and gray whales to harvest the high benthic production. But distributions of many
polar organisms are changing, with rippling consequences through the food web. Recent warming
and variability in sea-ice retreat coincided with declines in clam populations, which in turn co-
occur with dramatic declines in diving sea ducks, more northerly migrations of large vertebrate
predators (walrus and gray whales), and potentially poleward-expanding ranges for pelagic fishes
(cf. Grebmeier et al. 2010). Further north, the rapid loss of sea ice in the Chukchi Sea has resulted
in the relocation of thousands of walrus to land in both Russia and Alaska (Fischbach et al. 2009).
These community structure changes are also influencing traditional subsistence hunting by native
communities, who must now travel longer distances in open water to hunt.

In the Antarctic, winter air temperatures along the WAP have warmed by 6°C since the 1950s,
seasonal sea-ice duration has declined by nearly 90 days since the beginning of satellite-based
measurements in 1978, and increased upwelling of warm Antarctic Circumpolar Current water
has occurred (Schofield et al. 2010). Coincident water-column warming and increased freshwater
input from melting glaciers in the WAP are forcing changes throughout the marine ecosys-
tem (Schofield et al. 2010). Time-series satellite ocean color records for the northern regions of
the WAP indicate that phytoplankton stocks have declined by over 80%, owing to sea-ice loss
reducing the meltwater-induced water-column stratification that is necessary for plant growth
(Montes-Hugo et al. 2009). By comparison, phytoplankton standing stocks have increased in the
south in the present seasonal marginal ice zone.

As in the Arctic, warming has especially significant impacts on cold- and ice-adapted species
as suitable habitats contract toward the poles. The decline of Antarctic sea ice may be the cause
of a major regime shift in the pelagic community, where krill have declined by an order of mag-
nitude in the Atlantic sector since 1950, with a corresponding increase in the abundance of salps,
leading to important consequences for the pelagic food web (Atkinson et al. 2004, Schofield
etal. 2010). Owing to these cascading responses to sea-ice loss, reduced krill availability, and ele-
vated late-spring snowfalls, the population of Adélie penguins has declined by 80% in the Palmer
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Station region, similar to observed declines in crabeater seals in the region (Ducklow et al. 2007).
Conversely, in a case of opening niche space and species expansion, the ice-avoiding or ice-tolerant
gentoo penguins and fur seals are now migrating into the region and establishing new breeding
colonies (Schofield et al. 2010). This example of species range expansion is similar to the north-
ward range migration of the gray whales in the Chukchi Sea occurring because of reduced sea-ice
extent and duration (Moore 2008). Thus, in both polar marine regions, the reduction of sea ice,
warming seawater, and increasing freshwater content are impacting species composition, produc-
tivity, phenology, and predator-prey interactions. The impacts of these changes on biodiversity
and marine biogeochemical cycling can have both known and unknown consequences to the
world ocean and internal feedbacks to climate. With continued warming, we can expect poleward
species migrations that could reorganize traditional cold-adapted biomes, change biodiversity, and
increase food-web complexity, with direct impacts on carbon transfer within the polar ecosystem
and enhanced connectivity with the global ocean system.

Coral Reef Systems

Because one-quarter of all marine species associate with coral reefs, the ecological impacts
of changing climates and chemistry on overall marine biodiversity are potentially severe and
widespread. The ability of the coral animal to create massive and complex reef structures, on
which the rest of the ecosystem depends, is sensitive to relatively small changes in temperature
and pH (Kleypas et al. 2006, Hoegh-Guldberg et al. 2007). Because the effects of climate change
are already apparent on coral reefs, this ecosystem is often called the canary in the coal mine
for warming and acidification. Concerns about reefs are heightened by the fact that most coral
reefs today are also severely impacted by multiple stressors such as overfishing, destructive fishing,
pollution, sedimentation, nutrient overenrichment, and invasive species.

Warming of as little as 1°C causes coral bleaching, a state in which the tissues of the coral be-
come colorless because of the loss of the zooxanthellae, the symbiotic dinoflagellates that through
their photosynthesis fuel the growth of their coral hosts (Hoegh-Guldberg et al. 2007, Donner
2009). Moderate bleaching results in stress that causes reduced growth rates and reproductive
output, whereas severe bleaching results in coral death. Bleaching also appears to make corals
more vulnerable to disease, so that some death occurs after a time lag (e.g., Muller et al. 2007).
Genetic diversity in hosts and symbionts leads to a diversity of responses to mild temperature in-
creases, but severe temperature anomalies almost always lead to widespread bleaching and death.
Reefs are likely to become dominated in the future by symbiotic associations with warm-tolerant
zooxanthellae, allowing some corals to survive moderate temperature increases. However, these
more robust zooxanthellae may be less suitable as partners from the perspective of other aspects
of coral health, such as growth (Jones & Berkelmans 2010).

Ocean acidification makes it more difficult for corals to secrete and maintain their skeletons
(Salvat & Allemand 2009). Some coral species lose their skeletons altogether (Fine & Tchernov
2007), and skeletal growth of recent recruits can be disrupted (Cohen et al. 2009). Growth rates
of adult corals may be reduced, or their skeletons may be less dense (which would make storm
damage more serious). However, as with zooxanthellae and temperature, some coral species are
likely to be more resistant to the effects of low pH.

Many other reef organisms can also be negatively affected by changing temperatures and pH.
A particularly worrying possibility is the reduction of cover by coralline algae, which are preferred
recruitment surfaces for coral larvae but are highly sensitive to low pH because of the chemical
composition of their calcareous skeletons (Doney et al. 2009). Ocean acidification also disrupts
the sensory abilities of coral reef fishes (Munday et al. 2009) and likely has reproductive impacts
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on external spawners. The impact that seemingly countless small changes in the fitness of many
individual species have on the function of entire coral reef ecosystems is currently impossible to
estimate, but potentially substantial.

In addition to the direct negative effects of warming and acidification, many reef-associated
species are also expected to decline because of the decline in their coral-constructed habitat.
Preliminary studies indicate a loss in both fish diversity and invertebrate diversity (Jones et al.
2004, Idjadi & Edmunds 2006), with loss of coral cover and structure. Some coral-associated
species are able to live in other habitats (e.g., rocky reefs), but others are specialized coral associates
restricted to reefs.

Coral reefs are particularly vulnerable to future temperature increases and acidification because
of the losses they have already suffered, amounting to reductions of coral cover of ~80% in the
Caribbean and ~50% in the Pacific, much of it due to local human impacts (Jackson 2010). In
the long run, low growth rates caused by a combination of factors may make it difficult for the
growth of coral reefs to keep up with rising sea levels, losses due to storm damage, and bioerosion,
as ultimately, the existence of reefs depends on net positive accretion. Viewed more positively,
protection from local stressors can make reefs more resilient in the face of global change (Knowlton
& Jackson 2008).

The literature of coral reef degradation makes frequent reference to tipping points and thresh-
olds. For example, overfishing can make the effects of mortality from mass coral mortality via
bleaching much worse, as the liberation of bare space can result in algal blooms that overwhelm
local herbivores, leading ultimately to domination by distasteful algae that inhibit reef recovery
(a phase shift). Recently, Hoegh-Guldberg et al. (2007) have argued that specific concentrations
of CO; in the atmosphere represent thresholds for the existence of reefs in any substantial form.
In fact, there are a series of tipping points and thresholds relating coral reef health and CO,
concentrations via the frequency of bleaching events, the likelihood of phase shifts, and the loss of
the corals’ ability to build reefs (Mumby et al. 2011). Coral recovery was faster in the Caribbean
in areas where mangrove connections to reefs were intact (Mumby & Hastings 2008), which may
also influence the resilience of coral reefs to climate change and CO;.

The most serious consequence of rising temperatures and dropping pH would be extinction.
Although marine species have traditionally been viewed as less vulnerable to extinction, the combi-
nation of global change and local stressors may change this. Recent analyses suggest that one-third
of all coral species may be at risk of extinction (Carpenter et al. 2008). Reef fish are also vulnerable
(Graham et al. 2011); however, there is relatively little overlap between the fishes most vulnerable
to climate change (primarily due to loss of coral habitat) and those most vulnerable to overfishing.
Thus, these two stressors may have synergistic negative effects on fish diversity.

Upwelling Systems: The California Current

EBCSs characterize the eastern margins of both the Pacific and Atlantic Oceans, and support high
production throughout the food web owing in large part to persistent coastal upwelling of nutrient-
rich water. The California Current s one of four highly productive EBCSs that collectively support
as much as one-fifth of the global marine fish harvest. Exceptional, yet variable, productivity arises
from transport of subarctic water from the north via the California Current itself and wind-driven
coastal upwelling flows that supply nutrients to the sunlit upper ocean (Checkley & Barth 2009).
Ecosystem structure and function within the California Current are strongly influenced by the
natural basin-scale modes of interannual to interdecadal climate variability, including ENSO,
the Pacific Decadal Oscillation (PDO), and the North Pacific Gyre Oscillation (Chavez et al.
2011). By modulating gyre circulation, current flows, sea level, and depths of the thermocline
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and upwelling cells, these modes of oceanic and atmospheric variability play fundamental roles
in structuring the flow of energy and nutrients through food webs across the California Current.
Although strong interannual and interdecadal climate variability pose inherent challenges in the
attribution of ecological changes in the California Current to climate change, multidecadal time
series of climate variability and ecosystem responses have provided important insights into the
suite of dynamics that will likely govern future changes.

Climate change is expected to have several far-reaching consequences for the California
Current, stemming from alterations in water-column stability, timing and intensity of upwelling-
favorable winds, and the sources and chemical properties of water that is advected horizontally
and vertically into the system. A warming ocean is projected to reduce nutrient inputs and primary
productivity as the thermocline deepens and stratification intensifies. There is considerable evi-
dence of significant warming (Schwing et al. 2010) and concomitant changes in water-column
stratification (Palacios et al. 2004) across the California Current over the past century. The
longest ecological time series starts not with phytoplankton but with zooplankton in the southern
California Current. There, zooplankton biomass has declined dramatically over the past 60 years
in concert with increases in ocean temperature (Roemmich & McGowan 1995), a trend that con-
tinues to this day. Reductions in pelagic tunicates are largely responsible for this decline from the
1950s to early 1990s, possibly as warm-water taxa were favored by a shift toward greater relative
abundance of small prey (picoplankton) (Lavaniegos & Ohman 2003). Hsieh et al. (2009) report
a similar declining trend for nongelatinous zooplankton in the region. Because a shift toward less
abundant, smaller, and lipid-poor subtropical copepods accompanied the transition into warm
phase of the PDO (Peterson & Schwing 2003), continued warming of the California Current is
predicted to translate up the food chain to reduce juvenile survivorship in salmonid fishes.

Extended time series of primary productivity or phytoplankton biomass are surprisingly
rare, but illustrate some of the complexity of pelagic ecosystem responses to warming-induced
changes in physical forcing. Continuous records available for the central and southern California
Current since the 1980s indicate shoaling of high-nutrient subsurface waters and increasing pri-
mary productivity (Aksnes & Ohman 2009, Chavez et al. 2011). This runs counter to expected
nutrient declines from a warming ocean surface, as shoaling of nutrient-rich water has occurred
despite increased stratification (Aksnes & Ohman 2009). The California Current spans strong
physical gradients in the circulation and water-column structure that mediate spatial variation in
ecosystem response to climate change (King et al. 2011). As a consequence, the rate of warming
is spatially heterogeneous, and increases in upwelling-favorable winds have slowed or reversed
warming trends in some nearshore regions (Garcia-Reyes & Largier 2010). In this manner, nutri-
ent declines associated with water-column warming can be countered by strengthening of winds
that drive coastal and curl-driven upwelling flows (Auad et al. 2006). In the southern California
Current, shoaling of nutrient-rich water is consistent with an increase in wind-stress curl since
the 1980s (Rykaczewski & Checkley 2008) and may be countering the first-order effects of sur-
face warming. Whether observed changes in wind forcing reflect secular trends or decadal-scale
variability in the climate system of the California Current, and what net impacts warming and
upwelling increases will have on future production (Di Lorenzo et al. 2005), have emerged as two
critical questions for further research.

The likely impacts of a warming California Current on ecosystem function and upper-trophic-
level consumers can be estimated by using observed declines in nutrient supply and primary
production as proxies. Both of these changes were observed during strong El Nifios and as the
system transitioned into the 1977-1998 warm phase of the PDO (McGowan et al. 2003), and in
both instances, declines in primary production propagated up the food web from zooplankton to
upper-trophic-level consumers, including seabirds (Veit et al. 1996, Sydeman et al. 2009). There
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is also strong evidence that the trophic impacts of climate change can extend from changes in
both the mean and variance of production at the base of the food web. In the southern California
Current, Kim et al. (2009) demonstrated increasing chlorophyll # concentrations as well as an
advancement in the timing of the spring bloom. In the northern California Current, the peak
biomass of Neocalanus plumchrus, a large copepod, has both narrowed and advanced by nearly
6 weeks over 30 years (Mackas et al. 2007). Asynchronies between prey availability and demand
can have particularly strong consequences for consumers such as migrating juvenile salmon, or
breeding seabirds that undergo critical life-history transitions over narrow phenological windows.
For example, seabird reproductive failures have been attributed to spatial and temporal mismatches
in the availability of and demand for prey (Sydeman et al. 2006). In some cases, seabird breeding
success has become more variable while average values have remained largely unchanged (Sydeman
et al. 2009).

Climate change has also altered community structure via nontrophic pathways. In the Santa
Barbara Basin, Field et al. (2006) showed an increasing abundance of foraminifera with subtrop-
ical zoogeographic affinities as the system warmed over the past century. Similarly, in nearshore
regions, Barry et al. (1995) documented a shift toward increased abundance of southern taxa
and decreased abundance of northern taxa in intertidal communities that experienced long-term
warming between the 1930s and 1990s. Hsieh et al. (2009) showed long-term changes in the
abundance of fish (25 of 34 species) in the oceanic region, as well as redistributions (16 of
34 species). Field et al. (2010) showed long-term declines in the relative abundance of young
rockfish (Sebastes spp.). In the Southern California Bight, the conservation habitat for cowcod
rockfish (Sebastes levis) is projected to be reduced by 18% over the next 20 years should present
trends in the shoaling of the hypoxia horizon continue (McClatchie et al. 2010). In the northern
California Current, reduced oxygen content in water masses that feed coastal upwelling flows,
in combination with strengthened upwelling-favorable winds, has resulted in oxygen declines
(Grantham et al. 2004, Chan et al. 2008) to hypoxic levels where fishery catch can be suppressed
(Keller etal. 2010). Changing ocean conditions also may allow highly mobile predators (e.g., jumbo
squid; Field et al. 2007) to expand their range and exploit new ecosystems. Therefore, observa-
tional evidence confirms climate-related changes across multiple trophic levels in the California
Current.

In the future, transitions across climate regimes may provide critical insights into the likely
responses of the California Current to continued climate changes. Such insights may prove par-
ticularly valuable if future changes are expressed through increased variance in ENSO or North
Pacific Gyre Oscillation activity, as Di Lorenzo et al. (2010) have predicted. At the same time,
the value of past climate-ecosystem dynamics as analogs for future changes becomes less certain
(Chavez et al. 2011). For example, warm ENSO events have involved both thermocline deepen-
ing and upwelling reductions. In contrast, future climate scenarios are predicted to involve both
increased thermocline depth and upwelling wind stress (King et al. 2011; Figure 3). Similarly,
future warming in the California Current will be accompanied by increases in nutrient supply (and
decreases in dissolved oxygen and pH) if basin-scale warming increases the age and preformed
nutrient content of upwelled water (Rykaczewski & Dunne 2010). Additional changes in carbonate
chemistry due to continued ocean uptake of anthropogenic CO, will further represent challenges
to ecosystem structure and function that are largely unpredictable from past dynamics.

FINAL THOUGHTS

As illustrated in the case studies, evidence is mounting that the physical and chemical conditions
present in different ocean regions are changing with time, and that climate and CO, can have
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Figure 3

Summary of climate-dependent changes in the California Current. Observed physical changes include surface warming, strengthened
stratification, and a deepening thermocline that is superimposed on strengthened upwelling wind stress and resultant increases in
coastal and curl-driven upwelling. Long-term declines in dissolved oxygen have resulted in intensification of shelf hypoxia and vertical
displacement of the hypoxia horizon, reducing the habitat for certain oxygen-sensitive demersal fish species and increasing the
inorganic carbon burden and potential for N, O flux. The surface inorganic carbon load has also increased because of anthropogenic
CO; uptake. Time series from the past two to three decades indicate increasing trends in phytoplankton biomass; longer time series for
zooplankton indicate decreasing biovolumes over the past six decades as well as shifts toward an earlier and narrower window of peak
abundance. Increases in oceanic larval fish have been observed, as have declines in salmon and rockfish productivity. Seabirds have
experienced more variable and in some cases declining breeding success. Distributional shifts toward species with subtropical or
southern ranges (warmer) and away from species with subarctic or north ranges (cooler) have been evident in intertidal invertebrate,
zooplankton, and seabird communities.

substantial effects on organism physiology, populations of individual species, and community
composition and biodiversity. Somewhat less is known about the consequences of these climate-
induced shifts for ecosystem structure and aggregated ecosystem functions, such as energy flow
from primary production through to upper trophic levels, connections across habitats via dispersal
and transport, sequestration of organic carbon, and biogeochemical cycling. Research is also just
starting to define and quantify the large range of potential synergistic impacts that could arise
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from co-occurring climate, CO,, and nonclimate stressors, thus amplifying human environmental
pressures. In many cases, existing data records are too short to clearly attribute the mechanism
causing observed biological changes or to differentiate between the effects of natural climate
variability and secular climate trends.

Drawing lessons from existing ecological studies, we can generate useful hypotheses about
future climate impacts that can be tested with empirical information and models. For exam-
ple, as both the polar and California Current case studies illustrate, we should expect continued
shifts in the abundance, phenology, and distribution of individual species in response to further
warming and sea-ice retreat. Differential responses across species assemblages may also become
more pronounced as the strength of anthropogenic forcing grows, leading to the increasing pos-
sibility of substantial disruptions in biological interactions and existing community composition.
In the future, climate and CO, impacts may grow large enough to create no-analog ecosystems
whose behavior will be more difficult to forecast based on historical patterns. Nonlinear responses,
thresholds, and counterintuitive effects may also arise.

The current state of knowledge highlights the need for a more comprehensive, multispecies
approach to ecosystem-level analyses in order to better track and forecast changing marine ecosys-
tems. Research needs span laboratory and field process studies, manipulative experiments, obser-
vational networks, historical data synthesis, and modeling from small-scale process simulations to
large-scale coupled biophysical models. Especially important is the establishment of long-term,
biologically oriented, and ecosystem-based observational systems. These sustained networks are
essential for detecting and attributing ecological changes in response to rising CO,, climate change,
and other human pressures. Research should also feed into improving ecological forecasting ca-
pabilities to support climate adaptation strategies and policy decisions.

SUMMARY POINTS

1. Risingatmospheric CO; is causing increasing atmosphere and ocean temperatures, which
in turn drive rising sea levels, increased vertical stratification, retreating sea ice, and
altered precipitation, runoff, and wind patterns. Warming and altered ocean circulation
reduce subsurface oxygen concentrations, and rising atmospheric CO, leads to ocean
acidification.

2. Regional pressures on ocean ecosystems arise from runoff from intensive fertilizer use,
coastal and benthic habitat degradation, fish stock overexploitation, growing aquaculture
production, and invasive species. These factors interact in complex and sometimes syn-
ergistic ways such that these multiple stressors on marine ecosystems—both CO, and
non-CO; related—must be considered in total, not as independent issues.

3. Climate and CO, changes influence many levels of ocean biological organization and
function. Direct temperature and chemical effects alter organism physiology and behav-
ior, leading to population-level impacts such as poleward shifts in spatial ranges as well
as changes in population size, population growth rates, and seasonal variation.

4. Community-level impacts of climate change stem from altered physiology that trans-
lates to changing interactions among species such as competition, grazing, predation,
and disease dynamics. Together with local climate-driven invasion and extinction, these
processes result in altered community structure and diversity, including emergence of
novel ecosystems.
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5.

No ecosystem is unaffected by the diverse effects of rising CO; levels. The effects of
climate change are particularly striking for the poles and the tropics, because of the sen-
sitivity of polar ecosystems to sea-ice retreat and poleward species migration as well as the
sensitivity of coral-algal symbiosis to minor increases in temperature. Ocean acidification
may hasten the decline of tropical coral ecosystems.

. Intra- and interdecadal climate variability in midlatitude upwelling systems, like the Cali-

fornia Current, reveals strong linkages between climate forcing and species distributions,
phenology, and demography. This coupling highlights the sensitivity of the California
Current to further changes in the climate system that regulates ocean stratification, up-
welling wind stress, and basin-scale circulation.

. Rising CO; and climate change may modify overall ecosystem properties such as trophic

structure, food-web dynamics, and aggregated functioning such as energy and material
flows and biogeochemical cycles, eventually impacting the ecosystem services upon which
people and societies depend.

FUTURE ISSUES

1. To what extent will climate change be expressed through changes in the temporal vari-
ability and amplitude of key modes of natural ocean climate cycles?

2. What effects will interactions between natural climate cycles and anthropogenic climate
change have on marine ecosystem structure and function?

3. How will the possible emergence of ecosystem states with no analog in the past impact
our ability to forecast future dynamics of marine ecosystems?

4. How will marine ecosystems respond to the interactions between climate-dependent and
climate-independent stressors?

5. How do ecosystem tipping points scale from physiological-, population-, and
community-level processes? What information is critical for predicting approaching tip-
ping points?

6. Which aspects of marine ecosystem structure are mostimportant for conferring resilience
against climate stressors and most amenable to management?

7. What role will biological acclimatization and adaptation play in modulating the rate of
climate-driven marine ecosystem change?

8. How will climate change effects on marine ecosystem structure and function impact
society’s ability to rely on the flow of goods and services from the sea?
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