
Functions of two or more
variables

While we have had great success

using calculus to find maxima and

minima of functions of one variable,

the truth is that most phenomena

are dependent on more than one

variable. For example the number of

lemons on a lemon tree depends on
the volume of water given x l/year

the number of parasites y

the amount of fertiliser z

the severity of frosts t

etc . . .

n is a function of many variables:

n = f(x, y, z, t, . . . ).
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Functions of two variables have

recipes like:

f(x, y) = x+ xy + y2

f(0, 0) = 0 + 0× 0 + 02 = 0

f(1, 0) = 1 + 1× 0 + 02 = 1

f(1, 1) = 1 + 1× 1 + 12 = 3

f(−1, 2) = −1 + (−1)× 2 + 22 = 1

MATH1011[2007Part05] 2



Finding maxima and minima of

functions of two or more variables

requires a few new ideas..

We shall look at functions of two

variables because the passage to

more than two variables doesn’t need

new ideas and because we can (just

about) draw graphs for functions of

two variables: they look like surfaces

in three-dimensional space.
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As (x, y, 0) runs over a region in the

xy-plane f (x, y, f(x, y)) runs over a

surface in 3D space.
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We now look at some of these

“graphs.”

f(x, y) = 3
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f(x, y) = −2x+ 3y + 6
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f(x, y) = x2 + y2
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f(x, y) = 9− x2 − y2
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f(x, y) =
√

9− x2 − y2
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f(x, y) = (x2 + y2)2 − 50(x2 + y2)
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f(x, y) = x2 − y2
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A few ideas which make it easier to

understand these graphs are:

• The graphs above where

f(x, y) = g
(
(x2 + y2

)
are surfaces

of revolution: you revolve z = g(x)
about the xaxis.

• You can draw “contour plots,” like

contours on a topographical map

(horizontal sections).

• You can think about other sorts of

section.
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Graph of z = x2 + y2
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Contour Map of z = x2 + y2
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Graph of z = x2 − y2
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Contour Map of z = x2 − y2
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Graph of z = sinxy
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Contour Map of z = sinxy
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Graph of z = xey
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Contour Map of z = xey
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Monkey Saddle

-2
-1

0
1

2

-2

-1
0

1
2

-4

-2

0

2

4

MATH1011[2007Part05] 22



Graph of z = cos(x2 + y2)
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Contour Map of

z = cos(x2 + y2)
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Graph of z = x3 − y2
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Contour Map of z = x3 − y2
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In two dimensions we have the idea

of tangent and the slope of the

tangent (or derivative).
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In three dimensions we have the idea

of tangent plane and we need to find

ideas which correspond to the slope

of the tangent (or derivative). There

are many different slopes at a point

on a surface: imagine you are skiing;

you can ski directly downhill or lessen

the slope by skiing across the slope.

All these possible slopes lie in a single

plane, the tangent plane.
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Clearly we want to be able to find

tangent planes: they will provide the

key to finding maxima and minima;

the tangent plane going flat (as at

the top of a hill or the bottom of

a valley) is exactly like the tangent

line going flat for functions of one

variable.
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Finding the tangent plane.
Take a function, f(x, y), of two

variables and take a point (a, b)
in the xy-plane. Assume that the

tangent plane has equation

z = Ax+By + C

Look at the section where y = b:

the section of the surface is the

graph z = f(x, b); the section of

the tangent plane is the graph z =
Ax+Bb+ C.
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We get the following familiar picture.

x

z

a

z = fHx,bL

Ha,fHa,bLL

z = Ax + Bb + C
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The section is a graph with a tangent

line. We already know how to handle

this. For clarity write g(x) = f(x, b):

so that:

x

z

a

z = gHxL

Ha,gHaLL

z = Ax + Bb + C

MATH1011[2007Part05] 34



We can now write down the equation

of the tangent in two ways and

compare them.

By sectioning

z = Ax+Bb+ C.

By using the last picture

z = g(a) + g′(a)(x− a)

= g′(a)x+ g(a)− g′(a)a.

So

A = g′(a)

Bb+ C = g(a)− g′(a)
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Taking a similar section x = a and

writing h(y) = f(a, y) we get

y

z

b

z = hHyL

Hb,gHbLL

z = Aa + By + C
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We can now write down the equation

of the tangent in two ways and

compare them.

By sectioning

z = Aa+By + C.

By using the last picture

z = h(b) + h′(b)(y − b)
= h′(b)x+ h(b)− h′(b)b.

So

B = h′(b)

Aa+ C = h(b)− h′(b)
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Collecting we get

A = g′(a)

B = h′(b)

C = h(b)− h′(b)b−Aa
= h(b)− h′(b)b− g′(a)a

C = g(a)− g′(a)a−Bb
= g(a)− g′(a)a− h′(b)b

The two versions of C are identical

because

g(a) = f(a, b) = h(b).
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The tangent plane is

z = g′(a)x+h′(b)y−g′(a)a−h′(b)b+f(a, b)

or

z−f(a, b) = g′(a)(x−a)+h′(b)(y−b).

What are g′ and h′?

g′(x) is obtained by holding y

constant (y = b) and differentiating

with respect to x.

h′(y) is obtained by holding x

constant (x = a) and differentiating

with respect to y.
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g′ and h′ are called partial derivatives

g′ is written
∂z

∂x
or
∂f

∂x
or fx.

h′ is written
∂z

∂y
or
∂f

∂y
or fy.

The tangent plane is

z−f(a, b) = fx(a, b)(x−a)+fy(a, b)(y−b).
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Example
Find the tangent plane to

f(x, y) = x2 + y2 at (1, 1, 2).

fx(x, y) = 2x and fy(x, y) = 2y. So

fx(1, 1) = 2 and fy(1, 1) = 2 and

the equation of the tangent plane is

z − 2 = 2(x− 1) + 2(y − 1)

or

2x+ 2y − z = 2
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So if the problem is to find the

maximum or minimum values of

z = f(x, y) where (x, y) runs over

a region R of the plane, we can

follow the pattern of the one variable

situation. You can forget about

the points where the tangent is

not horizontal. So the points

where absolute maxima and absolute

minima might occur are:

• points where the tangent plane is

horizontal (fx = fy = 0),

• points where the tangent plane is

undefined,

• points on the boundary of the

region R.
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Having to think about the boundary

of R makes the two variable problem

much harder than the one variable

problem.
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We need to practise finding partial

derivatives.

Example

Let f(x, y) = 6xy4.
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To find fx: think “differentiating

with respect to x, so hold all other

variables constant.”

fx(x, y) = 6y4.

To find fy: think “differentiating

with respect to y, so hold all other

variables constant.”

fy(x, y) = 6x× 4y3 = 24xy3.

fx(1, 2) = 96 fy(1, 2) = 192.

Tangent plane at (1, 2, 96) is

z − 96 = 96(x− 1) + 192(y − 2)

i.e.

96x+ 192y − z = 384.
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Example

Let f(x, y) = 6x2 + 2y2.
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To find fx: think “differentiating

with respect to x, so hold all other

variables constant.”

fx(x, y) = 6× 2x = 12x.

To find fy: think “differentiating

with respect to y, so hold all other

variables constant.”

fy(x, y) = 2× 2y = 4y.

fx(1,−1) = 12 fy(1,−1) = −4.

Tangent plane at (1,−1, 8) is

z − 8 = 12(x− 1)− 4(y + 1)

i.e.

12x− 4y − z = 8
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Example

Let f(x, y) = −2x+ 3y + 6.
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To find fx: think “differentiating

with respect to x, so hold all other

variables constant.”

fx(x, y) = −2.

To find fy: think “differentiating

with respect to y, so hold all other

variables constant.”

fy(x, y) = 3.

fx(1, 1) = −2 fy(1, 1) = 3.

Tangent plane at (1, 1, 7) is

z − 7 = −2(x− 1) + 3(y − 1)

i.e.

−2x+ 3y − z = 6
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A plane is its own tangent at all

points in the plane.

Example

Let

f(x, y) =
√

2x2 − 5y

=
(
2x2 − 5y

)1
2 .
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To find fx: think “differentiating

with respect to x, so hold all other

variables constant.”

fx(x, y) = 1
2

(
2x2 − 5y

)−1
2 × 4x

=
2x√

2x2 − 5y
.

To find fy: think “differentiating

with respect to y, so hold all other

variables constant.”

fy(x, y) = 1
2

(
2x2 − 5y

)−1
2 × (−5)

= − 5√
2x2 − 5y

.
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fx(2, 0) =
√

2 fy(2, 0) = −5
4
√

2.

Tangent plane at (2, 0,
√

2) is

z −
√

2 =
√

2(x− 2)− 5
4
√

2(y − 0)

i.e.

4x− 5y − 2
√

2z = 4
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Example

Let f(x, y) = ex+3y.
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To find fx: think “differentiating

with respect to x, so hold all other

variables constant.”

fx(x, y) = ex+3y × 1 = ex+3y.

To find fy: think “differentiating

with respect to y, so hold all other

variables constant.”

fy(x, y) = ex+3y × 3 = 3ex+3y.

fx(1, 1) = e4 fy(1, 1) = 3e4.

Tangent plane at (1, 1, e4) is

z − e4 = e4(x− 1) + 3e4(y − 1)

i.e.

e4x+ 3e4y − z = 3e4
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Example

Let f(x, y) = sin(xy).
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To find fx: think “differentiating

with respect to x, so hold all other

variables constant.”

fx(x, y) = cos(xy)× y = y cos(xy).

To find fy: think “differentiating

with respect to y, so hold all other

variables constant.”

fy(x, y) = cos(xy)× x = x cos(xy).

fx(1, π2) = 0 fy(1, π2) = 0.

Tangent plane at (1, π2, 1) is

z − 1 = 0(x− 1) + 0(y − π
2)

i.e.

z = 1
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Example

Let f(x, y) = 10xy−3x2+y2−5x+
2y − 3.

-2

-1

0

1

2

x

-2

-1

0

1

2

y

-60

-40

-20

0

20

40

z

2

-1

0

1

x

MATH1011[2007Part05] 59



To find fx: think “differentiating

with respect to x, so hold all other

variables constant.”

fx(x, y) = 10y − 6x− 5.

To find fy: think “differentiating

with respect to y, so hold all other

variables constant.”

fy(x, y) = 10x+ 2y + 2.

To find the places where the tangent

goes horizontal, we set

fx(x, y) = fy(x, y) = 0.
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Then

− 6x + 10y − 5 = 0
10x + 2y + 2 = 0

i.e

x = 15
56

y = 19
56

fx
(15

56,
19
56

)
= 0 fy

(15
56,

19
56

)
= 0.

Tangent plane at
(15

56,
19
56,

3483
1568

)
is

z − 3483
1568 = 0

i.e.

z = 3483
1568
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Example

f(x, y) = ln
(√

x2 + 4y
)

= 1
2 ln(x2 + 4y)
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To find fx: think “differentiating

with respect to x, so hold all other

variables constant.”

fx(x, y) = 1
2 ×

1
x2 + 4y

× 2x

=
x

x2 + 4y

To find fy: think “differentiating

with respect to y, so hold all other

variables constant.”

fy(x, y) = 1
2 ×

1
x2 + 4y

× 4

=
2

x2 + 4y
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There are no points where the

tangent goes horizontal.
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Example

Let f(x, y) = x2 + y2.
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To find fx: think “differentiating

with respect to x, so hold all other

variables constant.”

fx(x, y) = 2x

To find fy: think “differentiating

with respect to y, so hold all other

variables constant.”

fy(x, y) = 2y

To find the places where the tangent

goes horizontal, we set

fx(x, y) = fy(x, y) = 0.

Then
2x = 0
2y = 0

i.e. x = y = 0. So the tangent plane
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is horizontal at the origin and only

at the origin.

The tangent plane at (x0, y0, z0)
[z0 = x2

0 + y2
0] is

z − z0 = 2x0(x− x0) + 2y0(y − y0)

i.e.

z−x2
0−y2

0 = 2x0x−2x2
0+2y0y−2y2

0

i.e.

z = 2x0x+ 2y0y − y2
0 − x2

0

i.e.

z + z0 = 2x0x+ 2y0y
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Example

Let f(x, y) = 9− x2 − y2 and

R = {(x, y) : x2 + y2 ≤ 9}

(i.e. R is the interior and

circumference of the circle centred

at the origin of radius 3. If we

are required to maximise f over the

region R, we note that f(x, y) = 0
on the boundary of R and positive

on the interior. So the maximum is

in the interior of R and as we shall

see below can only occur at a point

where fx(x, y) = fy(x, y) = 0.
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To find fx: think “differentiating

with respect to x, so hold all other

variables constant.”

fx(x, y) = −2x

To find fy: think “differentiating

with respect to y, so hold all other

variables constant.”

fy(x, y) = −2y

To find the places where the tangent

goes horizontal, we set

fx(x, y) = fy(x, y) = 0.
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Then
2x = 0
2y = 0

i.e. x = y = 0. So the tangent

plane is horizontal at the origin and

only at the origin. There are no

points where the tangent plane is

undefined and there is no maximum

on the boundary of R. Thus the

maximum must ocur at the origin

and the maximum value is 9.
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Example

Let

f(x, y) =
(
x2 + y2

)2 − 50(x2 + y2) + 4.
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To find fx: think “differentiating

with respect to x, so hold all other

variables constant.”

fx(x, y) = 2
(
x2 + y2)× 2x− 50(2x)

= 4x(x2 + y2 − 25)

To find fy: think “differentiating

with respect to y, so hold all other

variables constant.”

fy(x, y) = 2
(
x2 + y2)× 2y − 50(2y)

= 4y(x2 + y2 − 25)

To find the places where the tangent

goes horizontal, we set

fx(x, y) = fy(x, y) = 0.
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Then

4x(x2 + y2 − 25) = 0

4y(x2 + y2 − 25) = 0.

i.e. x = y = 0 or (x2 + y2− 25). So

the tangent plane is horizontal at the

origin and at each point on the circle

of radius 5 centred at the origin.
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When dealing with one variable

optimisation, we paused to make a

stab at classifying points where
dy

dx
= 0 and

d2y

dx2 = 0.

dy

dx
> 0 f increases

dy

dx
< 0 f decreases

dy

dx
= 0

d2y

dx2
< 0 local maximum

d2y

dx2
> 0 local minimum

d2y

dx2
= 0 more investigation
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d2y

dx2
> 0 f is concave up

d2y

dx2
< 0 f is concave down

d2y

dx2
= 0 f may have an inflexion
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We now look at the analogous
problem for functions of two
variables. First we need to look at
second order partial derivatives.

∂2z

∂x2
=

∂

∂x

(
∂z

∂x

)
= (zx)x = zxx

∂2z

∂y2
=

∂

∂y

(
∂z

∂y

)
= (zy)y = zyy

∂2z

∂x∂y
=

∂

∂x

(
∂z

∂y

)
= (zy)x = zyx

∂2z

∂y∂x
=

∂

∂y

(
∂z

∂x

)
= (zx)y = zxy
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For all the functions that we look at

it will be true that

∂2z

∂x∂y
=

∂2z

∂y∂x
.

We shall check once and then take

it for granted from then on.

Example
Find the first and second order
partial derivatives of z = 5x3y2 −
7xy.

zx = 15x2y2 − 7y zy = 10x3y − 7x

zxx = 30xy2 zyy = 10x3

zxy = 30x2y − 7 zyx = 30x2y − 7
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We now look for conditions for

z = f(x, y) to have local maxima,

local minima and saddles.

Suppose we have

fx(x0, y0) = fy(x0, y0) = 0. Look at

vertical sections through (x0, y0).
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x

y

x0,y0

x0+at,y0+bt
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In this section, the curve is

z = f(x0 + at, y0 + bt).

which means that

dz

dt
= fx(x0 + at, y0 + bt)× a

+ fy(x0 + at, y0 + bt)× b
= afx + bfy

and

d2z

dt2
= a2fxx + 2abfxy + b2fyy
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To get a local maximum we need a

local maximum in each section (for

all choices of a and b). So, for all

choices of a and b, we need
dz

dt
= 0

and
d2z

dt2
≤ 0.

To get a local minimum we need a

local minimum in each section (for

all choices of a and b). So, for all

choices of a and b, we need
dz

dt
= 0

and
d2z

dt2
≥ 0.

The
dz

dt
= 0 for all choices of a and

b means that we need fx = fy = 0.
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Completing the square we see that

d2z

dt2
= a2fxx + 2abfxy + b2fyy

= fxx

(
a+

bfxy

fxx

)2

+
b2

fxx

(
fxxfyy − f2

xy

)
This means that we can ensure a

local maximum with the conditions:

∆ = fxxfyy − f2
xy > 0 and fxx < 0

and a local minimum with the
conditions:

∆ = fxxfyy − f2
xy > 0 and fxx > 0
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Similar calculations show that
alternative conditions are, for a local
maximum

∆ = fxxfyy − f2
xy > 0 and fyy < 0

and for a local minimum

∆ = fxxfyy − f2
xy > 0 and fyy > 0

Further investigation shows that

∆ = fxxfyy − f2
xy < 0

gives a saddle.
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When

∆ = fxxfyy − f2
xy = 0

all sort of interesting things might

happen.

One variable local maxima and
minima

dy

dx
= 0

d2y

dx2
< 0 local maximum

d2y

dx2
> 0 local minimum

d2y

dx2
= 0 more investigation
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Two variable local maxima and
minima

Suppose fx = fy = 0 and

∆ = fxxfyy − f 2
xy.

∆ > 0
fxx < 0 or fyy < 0 local maximum

fxx > 0 or fyy > 0 local minimum

∆ < 0 saddle

∆ = 0 more investigation

MATH1011[2007Part05] 86



Example
Find any local maxima, minima or

saddles when z = x2 + y2.

zx = 2x zy = 2y.
and

zxx = 2 zxy = 0 zyy = 2.

So zx = zy = 0 at the origin (only)

and, everywhere,

∆ = zxxzyy − z2
xy = 4 > 0

Since zxx = 2 > 0, there is a local

minimum at the origin.
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f(x, y) = x2 + y2
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Example
Find any local maxima, minima or

saddles when z = 9− x2 − y2.

zx = −2x zy = −2y.
and

zxx = −2 zxy = 0 zyy = −2.

So zx = zy = 0 at the origin (only)

and, everywhere,

∆ = zxxzyy − z2
xy = 4 > 0

Since zxx = −2 > 0, there is a local

maximum at the origin.
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f(x, y) = 9− x2 − y2
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Example
Find any local maxima, minima or

saddles when z = x2 − y2.

zx = 2x zy = −2y.
and

zxx = 2 zxy = 0 zyy = −2.

So zx = zy = 0 at the origin (only)

and, everywhere,

∆ = zxxzyy − z2
xy = −4 < 0

So there is a saddle at the origin.
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f(x, y) = x2 − y2
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Example
Let z = x4 + x2y2 + y4. Find the

tangent plane at (1, 1, 3). Find any

local maxima, minima or saddles.

zx = 4x3+2xy2 zy = 2x2y+4y3.

Thus

zx(1, 1) = 6 zy(1, 1) = 6.

So the equation of the tangent plane

is

z − 3 = 6(x− 1) + 6(y − 1)

ie

6x+ 6y − z = 9.
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Now

zxx = 12x2+2y2 zxy = 4xy zyy = 2x2+12y2.

Since

zx = x(4x2+2y2) zy = y(2x2+4y2),

zx = zy = 0 at the origin (only) and

at the origin

∆ = zxx(0, 0)zyy(0, 0)−zxy(0, 0)2 = 0

So our rules do not tell us the nature

of the surface near the origin. In fact

it is a local minimum.
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f(x, y) = x4 + x2y2 + y4
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Example
Let

z = x3+3x2y+3xy2+y3+y2−x−y.

Find any local maxima, minima or

saddles.

zx = 3x2 + 6xy + 3y2 − 1

zy = 3x2 + 6xy + 3y2 + 2y − 1.

Setting fx = fy = 0, we get

3(x2 + 2xy + y2)− 1 = 0

3(x2 + 2xy + y2) + 2y − 1 = 0.
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i.e.

3(x+ y)2 = 1

3(x+ y)2 = 1− 2y.

So 1− 2y = 1 and y = 0. It follows

that 3(x + 0)2 = 1 and so there are

exactly two points where fx = fy =
0: (1

3
√

3, 0) and (−1
3
√

3, 0).

zxx = 6x+ 6y

zyy = 6x+ 6y + 2

zxy = 6x+ 6y
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At (1
3
√

3, 0).

zxx = 2
√

3

zyy = 2
√

3 + 2

zxy = 2
√

3

and

∆ = zxxzyy − z2
xy = 4

√
3 > 0

So, since zxx > 0 our rules tell us

that we have a local minimum at

(1
3
√

3, 0).
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At (−1
3
√

3, 0).

zxx = −2
√

3

zyy = −2
√

3 + 2

zxy = −2
√

3

and

∆ = zxxzyy − z2
xy = −4

√
3 < 0

So, since zxx > 0 our rules tell us

that we have a saddle at (−1
3
√

3, 0).
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f(x, y) = x3 + 3x2 + 3xy2 + y3 + y2−x− y
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f(x, y) = x3 + 3x2 + 3xy2 + y3 + y2−x− y
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Back to Absolute Maxima
and Minima.

Example

A box must have a sum of its length,

width and height equal to 1000 cm.

Find the shape of box which gives

the maximum volume.

Let the length, width and height of

the box be x cm, y cm and h cm,

respectively. We shall assume that

x ≤ y ≤ h.
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x cm
y cm

h cm
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Now x+ y + h = 1000
so h = 1000− x− y.

If the volume of the box is z cm3, we

have

z = hxy

= xy(1000− x− y)

= 1000xy − x2y − xy2

For practical reasons we shall assume

that x ≥ 0, y ≥ 0 and h ≥ 0. This

gives the following triangular region

of the plane.
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h=x+y=1000

We note that z = 0 on the boundary

of the triangle and z > 0 inside the

triangle.
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Our problem is to maximise

z = 1000xy − x2y − xy2

over the triangular region will have

just described.
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We find the partial derivatives.

zx = 1000y − 2xy − y2

zy = 1000x− x2 − 2xy

Since zx zy, are defined everywhere,

there are no relevant points of type 2.

Since z is positive inside the triangle

and zero on the boundary, the

boundary points (type 3 points) are

irrelevant to finding the maximum.

It follows that there must be a point

(or several points) inside the triangle

where zx = zy = 0 and that this

point (or one of these points) must

give the maximum value of z under
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the stated conditions.

Setting zx = zy = 0, we get

1000y − 2xy − y2 = 0

1000x− x2 − 2xy = 0
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i.e.

y(2x+ y − 1000) = 0

x(x+ 2y − 1000) = 0

Since the Maximum is not on the

boundary of the triangle, x 6= 0 and

y 6= 0. This leaves

2x+ y = 1000 = 0

x+ 2y = 1000 = 0

Solving the system of linear

equations, we get
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x =
1000

3

y =
1000

3

So the maximum is attained when

x = y = h =
1000

3

i.e. when the box is a cube of side
1000

3 . The maximum volume is(
1000

3

)3

=
1
27
× 109 cm3.
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Example

A plate of metal is made in the shape

of a square of side 2m. If the plate

is thought of as lying in the xy-

plane with boundaries x = ±1 and

y = ±1, the temperature in degrees

Celsius at the point (x, y) is

T = x2y2exy.

Find the hottest and coldest points

on the plate.

Our problem is to maximise T over

the region

R = {(x, y) | − 1 ≤ x ≤ 1,−1 ≤ y ≤ 1} .
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We find the partial derivatives.

Tx = xy2 (2 + xy) exy

Ty = x2y (2 + xy) exy

We see that Tx and Ty are never

undefined.

Setting Tx = Ty = 0, we get

solutions when either x = 0 or y = 0:

the whole of the x-axis and the

whole of the y-axis. There are no

solutions within the square coming

from 2 + xy = 0.

We have found possible optimal

points. We need to check the

boundary. This falls naturally into
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four pieces:

B1 = {(x,−1) | − 1 ≤ x ≤ 1}
B2 = {(1, y) | − 1 ≤ y ≤ 1}
B3 = {(x, 1) | − 1 ≤ x ≤ 1}
B4 = {(−1, y) | − 1 ≤ y ≤ 1}.

We are left with 4 one variable

optimisation problems.
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Problem 1

Find the maximum and minimum of

S1(x) = x2e−x where −1 ≤ x ≤ 1.

Now

S ′1(x) = 2xe−x−x2e−x = x(2−x)e−x.

Since S ′1 = 0 yields x = 0 and

x = 2, the possible maximum and

and minimum points are (−1,−1),

(0,−1) and (1,−1).
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Problem 2

Find the maximum and minimum of

S2(x) = y2ey where −1 ≤ y ≤ 1.

Now

S ′2(x) = 2yey + y2ey = y(2 + y)ey.

Since S ′2 = 0 yields y = 0 and x =
−2, the possible maximum and and

minimum points are (1,−1), (1, 0)
and (1, 1).
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Problem 3

Find the maximum and minimum of

S3(x) = x2ex where −1 ≤ x ≤ 1.

Now

S ′3(x) = 2xex + x2ex = x(2 + x)ex.

Since S ′3 = 0 yields x = 0 and x =
−2, the possible maximum and and

minimum points are (−1, 1), (0, 1)
and (1, 1).
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Problem 4

Find the maximum and minimum of

S4(x) = y2e−y where −1 ≤ y ≤ 1.

Now

S ′4(x) = 2ye−y−y2e−y = y(2−y)e−y.

Since S ′2 = 0 yields y = 0 and

x = 2, the possible maximum and

and minimum points are (−1,−1),

(−1, 0) and (−1, 1).
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We have collected the following

possibilities for optimal points:

x and y-axes

(−1,−1) (0,−1) (1,−1)

(1, 0) (1, 1) (0, 1)

(−1, 1) (−1, 0).

The corresponding function values

are
0

e 0 e−1

0 e 0

e−1 0.
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The minimum temperature is 0◦—
attained on the x-axis and y-axis.

The maximum value is e◦ attained

at (−1,−1) and (1, 1).
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